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Abstract

Given the sophistication of recent type systems, unification-based
type-checking and inference can be a time-consuming phase of
compilation—especially when union types are combined with sub-
typing. It is natural to consider improving performance through
parallelism, but these algorithms are challenging to parallelize due
to complicated control structure and difficulties representing data
in a way that is both efficient and supports concurrency. We pro-
vide techniques that address these problems based on the LVish ap-
proach to deterministic-by-default parallel programming. We ex-
tend LVish with Saturating LVars, the first LVars implemented to
release memory during the object’s lifetime. Our design allows us
to achieve a parallel speedup on worst-case (exponential) inputs of
Hindley-Milner inference, and on the Typed Racket type-checking
algorithm, which yields up an 8.46x parallel speedup on 14 cores
for type-checking examples drawn from the Racket repository.

1. Introduction

Recent programming language advances often rely on sophisticated
type systems [7, 8, 21, 33, 38], many of which incur a substantial
computational expense at type-inference or type-checking time.
In some cases, such as Liquid Haskell’s refinement types, it is
possible to offload this work to an optimized (SMT) solver [21].
In other cases—occurrence typing, dependent typing, and gradual
typing [37]—using an external solver is infeasible. Gradually-typed
languages, forleXahiple miay émploy uncommonly expressive type
systems to capture idioms from dynamically typed programming.

Typed Racket, for example, combines subtyping with first-class
polymorphism and flexible union types, resulting in difficul-to-
compute type inference problems even when restricted to local
inferen¢e. | This difficulty is not unique to Typed Racket, it is shared
by type systems for JavaScript (flow [3], Typescript [4]), Erlang
(Dializer [2]), and Ceylon [1]. But in this paper we focus on Typed
Racket as a case in point. In Typed Racket, even the arithmetic
plus operation combines hundreds of distinct type signatures. As a
result, a Typed Racket user recently posted a problematic program
which took more than 40 seconds to compile, dominated by type
inference for just a few function calls.’

In the lera of ubiquitous_parallel hardware, one idea is to par-
allelize these computationally expensive phases to reduce the
compile-edit-debug latency and enhance the software development
experience. Yet there has been little work on parallelizing compi-
lation of code below the granularity of a file or module, with the
exception of register allocation [40] E}ld flow analyses [30]. Fur-
ther, to the best of our knowledge, no prior work has parallelized
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type-checking algorithms for a full language like Typed Racket,
nor shown results for parallel unification in type-checking.

Most type checkers involve a unification process that contains
latent parallelism but exhibits poor locality. A simple example
is Hindley-Milner type inference, in which distinct expressions
might be processed in parallel, but where each individual type
variable can gain information from distant parts of the program
(and therefore from different threads). Indeed, even in functional-
language implementations of type inference—such as in the Glas-
gow Haskell Compiler (GHC)—mutable references are often used
for constraining type variables, complicating parallelization further.

Our goal is to parallelize despite these constraints, using lan-
guage constructs that enforce disciplined, monotonic use of muta-
ble state and eliminate unintended nondeterminism. In this work we
perform two experiments in parallel typechecking, using Haskell as
our implementation language for writing parallel checkers.

LVars for Type Variables? The use of mutable type variables re-
quires introducing synchronization in any parallel type-checking
implementation, to avoid data-races. In fact, there exists a class of
synchronization variables that are safe to share between computa-
tions in a functional language while retaining data-race freedom
and even determinism (both of which purely functional programs
enjoy by construction). Single assignment variables, or /Vars [6],
are one early example in this class. More recently, we introduced
a generalization that enables deterministic, functional programs to
synchronize on arbitrary monotonic data structures, called LVars
Kuper and Newton [22]. LVars preserves external determinism
while internally scheduling tasks nondeterministically. LVars share
similarities with Concurrent Constraint programming [31], and en-
able a general form of deterministic-by-default parallel program-
ming, implemented in Haskell by the “LVish” library>.

Previous work on LVars introduced general-purpose LVar data
structures including: (1)llock-free collections with concurrent in-
sertion (but not deletion), and (2) counters that increase monotoni-
cally. But application-specific LVars can be constructed as well; in
particular, an LVar would seem to provide a promising way to deal
with type variables shared between threads. A customp LVar could
capture the partial order implied by type unification. However, two
problems arise:

1. All published examples of LVars respond to conflicting infor-
mation by throwing an exception, which in general cannot be
caught deterministically within the purely functional core of a
language [28].

2. While LVars are a good fit for and-parallelism—where threads
join information concurrently—they do not help with the or-

2http://hackage.haskell.org/package/lvish
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parallelism found in some type systems, where speculative,
alternative additions of information must be considered.

Contributions In this paper, we overcome these two problems
and demonstrate the first wall-clock parallel speedup on type
inference with unification. Specifically:

e We introduce Saturating LVars (§4), an application of the exist-
ing LVar theory that adds the capability for both trapped-failure
and memory reclamation—addressing a major limitation of pre-
viously studied LVars. As a demonstration, we use Saturating
LVars for speeding up an implementation of Hindley-Milner
type inference on some inputs.

e We introduce stream algebras to describe modular formulations
of or-parallel constraint systems parameterized by an algebra
for manipulating streams of partial solutions. We provide an
efficient implementation using generators (§3).

e We then scale this stream generator architecture to apply it
to the Typed Racket type system (§6), achieving wall-clock
speedups both due to deforestation and due to parallelization.

2. LVars & LVish: Background

LVars generalize the earlier [Var model by allowing multiple writes.
Where [Vars simply signal an error upon writing to an already-full
location, LVars allow the states to be joined in a monotonically
increasing fashion according to a partial order on the possible states
of the data structure. The state space (hereafter lattice) contains
two distinguished elements | and T (representing uninitialized
and error respectively) along with a partial ordering C. One way
to increase the state of an LVar is through a put operation that takes
the least upper bound of its current state and its argument.

As a simple example, consider the lattice of natural numbers
ordered by the relation <. In the following program, two threads
race to write to an LVar [v:

do 1lv < newMaxIntLVar
fork (put 1v 1)
put 1lv 2

Regardless of the order in which the threads write to v, the join
operation ensures that the final state of (v is “2”—the lub of both
writes. As a result, we can freely share LVars between threads, safe
in the knowledge that we will deterministically receive a result (or
an error, in the case of the T state), because put operations always
commute. In this way, each LVar provides a parallel reduction with
an associative operation (least upper bound).

LVars also allow a restricted form of read via the get operation.
Generalizing the blocking reads of I'Vars, this operation will block
until the LVar’s state has reached one of a designated subset of
the lattice elements, known as the threshold set. This threshold set
determines what kind of get operation is performed—i.e., reading
a specific slot in an array, or key in a map. Get operations allow us
only to observe that the LVar is above some element of the threshold
set, rather than its precise state. The threshold set () is required to
be incompatible, that is, Va,b € Q,a #b—-allb=T.

As an example, an associative map LVar would have states such
as {(k1,v1), (k2,v2), ...}, and the threshold set corresponding to
a blocking read at key k1 would be {(k1,v:)|v; € Q}. Of course,
this threshold set, being potentially infinite, is not represented at
runtime.

In addition to thresholded get operations, changes to an LVar
can be observed through handlers (callbacks). When we attach a
handler to an LVar, it is called upon each change, and receives
the new state or state delta. With a container LVar, such as the
associative map, the handler would be called on every element
added, e.g.:

addHandler mapLV (A (key,val) — ... )

One interesting aspect of handlers is that addHandler must
commute with puts. That is, upon adding the handler above, it fires
for all existing elements as well as future additions to the set. Later
in this paper we will see how the concept of handlers interacts with
our proposed extension, saturating LVars.

Finally, LVars also offer the option of reading their full contents
exactly, after they have been frozen. The freeze operation disal-
lows further modifications, raising an exception if this occurs. For
full determinism, freezing must occur only after a global barrier to
avoid races between put and freeze.

Language agnostic LVars are a general parallel programming
construct and could be implemented in any language. The benefits
are clearest, however, in a deterministic by default language that is
able to statically enforce determinism by controlling side effects.
Deterministic Parallel Java [7]], for instance, is a research prototype
that meets this criteria. Haskell, on the other hand, is the only
full featured language—continuously developed and with a sizable
supporting community—that fits this description. Thus the LVish
library is currently implemented for Haskell. Following that, the
code examples in this paper are written in Haskell, and use LVish
conventions and functions where applicable.

2.1 A quick Haskell primer

We already saw some small Haskell examples in the previous
subsection, but here we give a quick introduction to the Haskell
features used in this paper, for readers unfamiliar with the language.
Conversely, those familiar are encouraged to skip to Section[2.2}

We assume a basic understanding of functional languages.
Haskell can be read as a mathematical notation with programs con-
sisting of equations defining functions. A caveat is that function
application is written £ x rather than £ (x), e.g.:

fx=2%xx+1

Also, we show anonyous functions using standard A notation,
such as (A x — 2xx+1).

Types The operator for type-annotation is also important, where
(e :: t) is read expression e has type t, for example: 3::Int
or (Ax—x+1) :: Int —Int. The grammar of types in Haskell
includes the application of type constructors to arguments, such as
T Int Bool (rather than T<Int,Bool>) which enables parametric
polymorphism, aka generics. The syntax of types is complicated
by the fact that some type constructors have special or infix syntax:
e.g. [T] and T1—T2 rather than “List T” or “Fun T1 T2".

An additional complication comes from Haskell’s system of
constrained types. For example, the literal 3 does not have type Int
in Haskell, but rather Num a = a, which is read “any type a where
ais in type class Num”. Everything before = is part of the constraint,
rather than the type proper. Standard classes include Eq, Ord, and
Num, and we will see these constraints in LVish computations where
they document or limit parallel communication effects.

New data types in Haskell are declared using the data keyword.
Any data type may be an enumeration or sum type. For instance, a
data type with three constructors can be defined like this:

data T = T1 Int | T2 Bool | T3

Unlike a simple enum, each variant can have one or more
fields attached to it: Int, Bool, and nothing, respectively. A case
expression can be used to handle each variant in turn:

f :: T — String

f v = case v of
Tl i — "case T1l: " ++ show i
T2 b — "case T2: " ++ show b
T3 — "case T3"
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Any argument to a function or A\ can also pattern match against
such constructors to extract the fields.

Side effects Being a purely functional language, Haskell restricts
side effects. That is, effects are permitted, but are tracked by the
type system, and typically introduced using a notation similar to
statements in an imperative language:
do statementl
X < statement2
return (x 4+ 1)

Here statementl is a monadic expression that performs an
effect, and doesn’t return anything useful. statement2 is like
statement1, except it returns a value in addition to performing an
effect, and the return value is bound to variable x. The last line adds
one to x, and puts the value in the monadic context with return.

A do block forms a single expression in Haskell, and it’s type
is m a where m is a monad and a is the type of return value. The
choice of monad determines which effects may be performed. The
most common monad is I0. For instance, the do-block above could
have the type I0 Int. In this paper we focus not on IO, but on a Par
monad for parallelism, separate from any other effects.

2.2 LVars, in practice

In the LVish library, parallel computations are exposed through a
Par monad. That is, do-blocks that use LVish constructs have type
Par e s a, where a is the return value of the monadic Par compu-
tation; the s parameter associates LVars with a specific session and
prevents them from escaping; and the e type parameter documents
the effect signature of the computation. For example, a function
over Ints that executes in LVish’s Par monad and may put to an
LVar has this type:

foo :: (HasPut e) = Int — Par e s Int

The Par monad is further equipped with various functions to launch
parallel computations and extract their result:

:: Det e = (V s. Par e s a) — a
(V s. Par e s a) — 10 a

runPar
runParNonDet

These ensure that only deterministic (Det) combinations of effects
are used from inside purely functional code, whereas nondetermin-
istic combinations require I0. This is standard, as the I0 type in
Haskell encompasses everything that cannot be considered purely
functional, including file IO and nondeterminism.

Irrespective of which runPar variant is used, the final return
values of type ‘a’ are pure Haskell values, i.e., not LVars. The
“Y s” above gives runPar a rank-2 type and is a standard trick
to ensure that LVars do not escape a runPar session, i.e. it is the
same approach used by Haskell mutable references, aka STRefs,
which we will encounter in the next section. If one wishes to return
LVars without copying, they instead use runParThenFreeze, which
uses the implicit barrier at the end of a runPar parallel region to
guarantee a race-free freeze of the result:

runParThenFreeze :: (Det e, DeepFrz a)
= Par e NonFrzn a — FrzType a

Freezing has no runtime cost. Rather, FrzType is a type-level func-
tion (type family) that “casts” the monotonic/mutable version of the
LVar to a pure/immutable sister type. FrzType is associated with
the DeepFrz class and implemented by each LVar in the library.
(NonFrzn is a safety detail—placed in the s parameter to prevent
mutating LVars that were frozen in other runPar sessions.)

A note effect signatures Effect signatures are important to the
LVish library; some effects are only conditionally deterministic; for
instance, canceling read-only futures is fine, but canceling a call
to foo above would introduce an observable data-race. Yet effect
signatures are not central to the way we use LVars in this paper,
S0 e parameters may be largely ignored. Through the rest of the

fa=b} ({b=TBool}

{a=TInt}

Figure 1. The partial order for the store containing all type vari-
ables used in a type-inference execution. The two highlighted nodes
are incompatible—their lub is T.

paper we will use LVars, handlers, and freezing. Also, in §4] we
will extend the mechanisms already covered with Saturating LVars.

3. And-Parallelism: Hindley-Milner Typing

We now have what we need to parallelize a basic type checking
algorithm. We begin with what is perhaps the most well-known
unification-based type inference algorithm: the Hindley-Milner
system [12]. Opportunities for effective parallelism in Hindley-
Milner are limited, but we use it as a warm-up exercise before
proceeding to the Typed Racket type system in §6]

Error handling In our exposition here we do not address error
reporting. Effective type error reporting is an active area of study
in its own right. Error reporting is often handled by a separate,
“slow path” algorithm, whereas the fast path—compiling well-
typed code—can use a type checking algorithm that merely returns
true or false. (Indeed, this is already the case for Typed Racket’s
inference function.)

Sequential Hindley-Milner The Hindley-Milner algorithm oper-
ates by walking over an expression, generating constraints over
type variables. These constraints are unified together to produce
a final typing judgement for the term. An implementation that uses
only immutable data would keep a store mapping type variables to
types, e.g2., Map Var Type. Recursive calls in the unifier produce
partial maps that are joined together. This process is widely re-
garded as inefficient, and in practice even type checkers written in
Haskell use a mutable representation of type variables to perform
unification updates in-place. In this case, an explicit type variable
store is unnecessary and monomorphic types can be defined as:
data Mono s = TVar Name (STRef s (Maybe (Mono s)))
| TInt
| TFun (Mono s) (Momo s)

Here the type variable is represented directly by its pointer to
the mutable location. The s parameter plays the standard escape-
prevention role discussed above and must be plumbed through Mono
to reach the mutable STRef. The STRef [24] allows a type variable
to be imperatively updated in the unify function, as shown below.

unify :: Mono s — Mono s — ST s ()
unify t1 t2 = do
case (t1, t2) of
(TInt, TInt) — return ()
(t, TVar v r) — unify (TVar v r) t
(TVar v ref, t) —
if occurs v t
then error "can’t construct infinite type"
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else do contents < readSTRef ref
case contents of
Nothing — writeSTRef ref (Just t)
Just t’ — unify t’ t
(TFun t1 t2, TFun t1’ t2°) —
do unify t1 t1’
unify t2 t2’
_ — error "can’t unify"

The infer function simply walks over the expression, unifying
type variables as they are found. For brevity, only the application
case is shown.

infer :: Env s — Term — ST s (Mono s)
infer env expr = case expr of

App el e2 —
do fnT < infer env el
arg < infer env e2
(v, ref) + freshTVar
unify fnT (TFun arg (TVar v ref))
return (TVar v ref)

Alas, in exchange for increased performance in the single threaded
case, using full STRefs (instead of pure functions) effectively takes
statically-guaranteed deterministic parallelism off the table.

Exploiting parallelism Fortunately, we can parallelize the algo-
rithm by switching from STRefs to an LVar constraint store, and can
even asynchronously share type constraints between threads (as in
concurrent constraint programming [31]]). The collection of type-
variable constraints accumulated during type-checking forms a par-
tial order under unification. We can model this state with a single
Map-like LVar. Note that, semantically, we cannot make each type
variable an LVar, because they lack a non-interference property—
constraining one may affect another.

Thus a TyVarMap is an application-specific LVar with a lattice as
shown in Figure [T} each type variable in the store is either empty
(unconstrained) or filled with a type, and an LVar put operation
corresponds to adding new information to a type variable. In this
case, unification of that information is a built-in behavior of the
LVar. Likewise, the LVar internally performs the occurs check, so
that a put which would cause a cycle goes to T instead.

The TyVarMap is indexed by an opaque type TyVar, and maps
each TyVar onto a Mono type. Mono remains the same as in our
previous example, except with TyVar replacing the STRef:

data Mono s = TVar Name (TyVar s) |
Unification is modified to internally include parallelism:

unify :: (HasPut e) =
TyVarMap s — Mono s — Mono s — Par e s ()
unify m ta tb = case (ta, tb) of

(TFun t1 t2, TFun t1’ t2’) — par2 (unify m t1 t1’)
(unify m t2 t27)
Here par2 is a fork/join combinator, executing two actions in par-
allel and returning two values.

Mono, together with operations on the TyVarMap become an ADT
for monotonic unification. We expose unify in this API which
subsumes a direct put operation on a specific Tyvar. We also need
a way to extend a TyVarMap by allocating a fresh type variable with
a fresh name, TVar n k:

freshTVar :: TyVarMap s — Par e s (Mono s)

Finally, at the very end of type checking, when the constraint store
is final (frozen), it becomes possible to read out individual entries:

getTyVar :: TyVarMap Frzn — TyVar Frzn — (Mono Frzn)

Optimizations The API above can be implemented using safe
constructs that use memory deterministically (and monotonically)
by construction, but this comes at a performance cost. For instance,

if we use an existing set LVar we could accumulate constraints,
but would read the set (and check for conflicts) until the end of a
type-checking job. This is an extreme form of the disadvantages de-
scribed earlier for purely functional (non-STRef) implementations
of unification.

Thus, as with virtually all LVars, it makes sense to use raw, un-
safe memory memory operations to implement a safe ADT. That is,
we want to mutable update each type variable and perform down-
stream unification on the fly, leveraging the fact that unification is
associative and commutative.

We can also go further. Because (1) the key type (TyVar) is
opaque, (2) we permit only one TyVarMap per runPar, and (3)
we expose no operation for iterating over the map, we can thus
deforest the map altogether, and define TyVar itself as a pointer to
a mutable location. Thus, even though we logically have a single
LVar per type checking session, operationally, this brings us back
to a runtime representation similar to the per-type-variable STRef,
with each TyVar key a mutable pointer.

Parallel Inference Irrespective of the implementation of Mono
and unification, inference is built on top of that ADT using only
safe-by-construction parallelism constructs. For instance, in the
application case of infer, we can recur on both subexpressions in
parallel while sharing a constraint environment:

infer :: TyVarMap s — Env s — Term — Par e s (Mono s)

infer tm env expr =

case expr of

App el e2 —
do (fnT, arg) < par2 (infer env el) (infer env e2)
tv < freshTVar
unify fnT (TFun arg tv)
return tv

These recursive calls use unify to add constraints to type variables.
Then the result of infer can extracted with runParThenFreeze to
yield a (Mono Frzn), which allows traversing the type variables,
using getTyVar, to read out the full monotype.

This approach yields a speedup when used to implement a
micro-ML calculus and run on a synthetic benchmark (see Fig-
ure [2)). (For type-checking benchmarks drawn from actual code,
see %) In this case, the benchmark is a large program with 1000
copies of a known-exponential nested-let expression. This is only
a small proof of concept—for real, large programs with Hindley
Milner inference, the challenge will be finding problems that take
long enough in practice (relative to the amount of memory they
read) that they are worth parallelizing. Nevertheless, with algo-
rithms such as Hindley-Milner—which perform well in the average
case but have dismal worst-case performance—it may be worth re-
searching parallelism as an “insurance policy” to ameliorate these
WOrst case outcomes

4. Saturating LVars: Trapped Failure

There is a problem with the formulation of Hindley-Milner type
inference in the previous section. If type-checking fails we would
like to simply return False or Nothing. But with the implementa-
tion in the previous section this failure instead appears as incompat-
ible puts, e.g. putting TInt and TBool to the same TyVar. Further, in
LVar-based programs, adding contradictory information to an LVar
always triggers the T state, which in previous implementations of
LVish meant throwing an exception.

3 Of course, a linear parallel speedup can’t match an exponential slowdown,
but it needn’t—even outliers, slow infer calls, in real programs are of fixed
nested-binding depth, not growing in the dimension that incurs exponential
complexity.
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Time in Seconds

STRef LVish-N1  LVish-N2  LVish-N3  LVish -N4

Figure 2. Hindley-Milner type inference on a generated term with
roughly a million nodes. The sequential (STRef) version is com-
pared against the LVish version. Note that even on one core, the
LVish version is still concurrent, sharing constraint information be-
tween concurrent computations via LVars. Experiments were per-
formed on a desktop-class Intel Xeon i5-3470, with GHC 7.8.3 and
+RTS -qa.

What is wrong with throwing an exception? Answering this
requires a bit of background. Haskell enables purely functional
but partial programming, and Haskell’s exception semantics [28]]
require that exceptions be handled only in the 10 monad to retain
referential transparency. In this case, it is important that we keep
our type checker out of the IO monad. Because we aim for a
deterministic type checker, we should either use only determinism-
safe features (not I0) or reduce the amount of “trusted code” that
uses unsafe features that may introduce nondeterminism—most
especially avoiding Haskell’s infamous “‘unsafePerformI0”.

Keeping failures in Par In order to avoid the exception handling
problem, we must capture and respond to type checking failures
within the Par monad. That is, when type variables gain conflicting
information, we want to simply return a value indicating no valid
substitution exists.

To enable trapped failures, we introduce Saturating LVars, de-
fined as an LVar whose lattice structure includes an additional state
Sat. Following the semantics for LVars formalized in our previous
work [23], such an LVar is given by a five-tuple (D,C, L, T, Sat),
extended to include the designated saturation state as well as the
usual set of states (D), a partial order (C), and designated bottom
and top states. It should further hold that:

1, T,Sate D, L #T, Sat #T

Vde D, (LCACT) A (dESatVvd=T)
An example lattice extended with the Sat state is pictured in
Figure[3] Alternatively, instead of adding a new state Sat, we could
globally reinterpret T for all LVars, but we eschew this option so
as to use Saturating LVars in programs that also have other LVars.
Further, while the penultimate-Sat-state convention is simple, its
ramifications are not:

1. The only usable (incompatible) threshold set for performing
blocking read or adding a handlexﬂ are singleton threshold sets,
of which the only useful one is {Sat}.

2. A saturating LVar’s state moves monotonically up the lattice,
but it does not monotonically gain information (bits). Notably

4 Actually, there is a safe way to add handlers that are notified of every put
to the SatLVar, but it requires that the handlers be attached at the point the
LVar is created, which prevents addHandler racing with saturate.

i whenSat
,,,,,,,,,,,,,,,,,,,,,,,,, oo »event
""""""" callback

"
I
|
|

Figure 3. Any valid LVar lattice is turned into a Saturating LVar
by adding an extra, penultimate state.

an LVar in the saturated state can be represented by as little as
one bit. This means that saturating LVars are the first practical
example of LVars that can release memory during their lifetime.
As saturating LVar’s don’t change the theory, this potential was
always present—when a higher state in a lattice requires fewer
bits to represent—but no extant LVars fell into this category.

3. Computations whose only effect is to write to a Saturating LVar
can be cancelled if that LVar saturates.

Because of the lack of useful threshold sets to underpin a family of
get operations (beside {Sat}), saturating LVars become effectively
write only. But all Saturating LVars can provide the following
operations (in addition to LVar-specific put operations):

class DeepFrz lv = SatLVar 1lv where

saturate :: 1lv — Par e s () -- Force to Sat state
whenSat :: lv — Par e s () — Par e s ()
isSat :: FrzType 1lv — Bool

This interface provides the ability to force LVars to saturate, re-
spond to saturation, and test for saturation after a parallel compu-
tation is completeﬂ Using this generic interface, we could, e.g., ar-
range for a saturatable set of LVars to become saturated whenever
one of its element does, e.g.:
do set < newEmptySet
-- Register a callback on each element inserted:
let addToSet sv =
do whenSat sv (saturate set)
insert sv set

We have produced a new, modified LVish library that supports
saturating LVars and in this library we provide:

® a SatMap data structure, which is a single LVar that maps keys
onto pure Haskell values that are instances of
PartialJoinSemiLattice. That is, multiple puts are allowed on
the same key, and are joined, but the join function may fail,
saturating the entire SatMap.

a FiltSet data structure that takes advantage of saturated
LVars in a different way—it represents a dynamic collection
of not-yet-failed saturated LVars. We observe that the type
Set (Maybe a) is isomorphic to (Bool, Set a), thatis, there’s
no need to store each element which has saturated. If we are in-
terested in collecting SatLVar’s that have not failed, then failed

3 The LVar can be tested for saturation with isSat only affer a parallel
region has ended and it is in a “frozen” state. Freezing LVars is covered in
detail in [23]].
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insert(10) | OLS Regression | RZ goodness-of-fit

Map LVar 19.5ns 0.991
SatMap 18.4ns 0.993

Set LVar 18.5ns 0.989
FiltSet 91.1ns 0.990

Table 1. Microbenchmark: the cost of creating a new structure and
inserting ten new Int elements. The cost of this (comparatively)
cheap operation is measured by varying the number of iterations of
benchmark, and computing a linear regression between iterations
and cycles (above). All measurements are from the deskrop plat-
form described in

insert/sat/insert | Set LVar | FiltSet

cycles 17838 15160

bytes alloc 14733 14128
bytes copied 759 115

Table 2. Microbenchmark: the cost of inserting 10 Counter ele-
ments in a set, saturating the previous 10, and repeating N times.
The Lvar.Set version must store the data as a set of nested LVars to
enable saturation of the inner variables. The FiltSet directly sup-
ports multiple assignments to a key, so requires one LVar rather than
10N +1. Above we regress IV against cycles, and below we regress
against bytes allocated and bytes copied during garbage collection.
This verifies that the while the FiltSet benchmark allocates O (V)
memory, it releases memory as it goes.

LVars can be discarded at runtime, freeing memory and shrink-
ing the set’s physical size.

In type checking, the SatMap structure is useful for representing
environments containing constraints, and a FiltSet can serve as
the accumulator when searching for a valid environment. These
two data structures are part of the parallel-type-checking toolkit we
provide in our new library; the microbenchmarks in Tables [I] and
show their performance relative to more basic LVar counterpart
data structures.

5. Or-Parallelism with Stream Algebras

With LVish plus the saturating LVar extension, we’ve acquired the
first tools in our parallel type-checking toolbox, enabling us to han-
dle parallel conjunctions over constraint-generating computations.
Indeed, Hindley-Milner type inference required only conjunction,
never disjunction. In this section we begin to address a broader—
and more expensive in practice—class of type checking algorithms:
those with or-parallelism. This is challenging, because we cannot
directly employ LVars the way we did in the previous section, stor-
ing type variable bindings in an LVar and updating it destructively.

Nevertheless, it is important to exploit or-parallelism for effec-
tive speedups in Typed Racket. Yet rather than dive directly into
Typed Racket in this section, we first introduce the implementa-
tion techniques using a simpler example problem that incorporates
conjunctions and disjunctions: satisfiability (SAT).

Parallel Constraint Solving Type systems are a particular flavor
of constraint problem. Indeed, if we view parallel type checking as
a parallel constraint satisfaction problem, we can look for guidance
from previous work on parallel logic programming [10} [17]] and
parallel constraint solvers [15| 131} 139]. Unfortunately, the data-
structures and synchronization strategies employed in these works
are extremely specialized to the constraint system being solved: for
example, SAT solvers have developed a large body of specialized
data structures and parallelization strategies [[18|[19].

Here we explore parallelization strategies that apply to any
constraint domain that can be formulated as an LVar. We will then

apply the same techniques to Typed Racket in §6] To illustrate our
approach we start with a simple constraint domain that consists
of variable assignments, e.g., x=4, closed under conjunction and
disjunction. Thus the input to our algorithm is a term such as:
(x=3ANy=48 V(y=3)A(y=3ANz=29)

We will solve these constraints using a recursive algorithm
that traverses the term, returning a stream of possible solutions
for each subterm. These solution streams can be combined by
concatenation (or), as well as by joining partial of solutions drawn
from the cartesian product of two streams (and). In fact, these
stream operations form a semiring, and we can formulate a simple
generic solution abstracted over a set of methods matching the
following signature:

data Semiring t

= Semiring { one :: t
, zer :: t
sadd :: t -t - t
,mul :: t =+t — t
, fromAssigns :: Map Var Int — t

}

This provides a simple algebra for solution streams, plus
fromAssigns, which is specific to the SAT problem and initializes
a solution from an initial variable assignment. In fact, the above
primitives are also used by our Typed Racket implementation to
manipulate streams of type environments, changing only the type
of fromAssigns.

5.1 The Simplest Stream Algebra

In a sequential Haskell implementation, the natural representation
of solution streams for SAT is as a lazy list of variable assignments,
each represented by a Map:

type Soll a = [Env a]
type Env a = Map Var a

For simple equality constraints, the algebra is implemented as:

listStrms :: Semiring (Soll Int)
listStrms = Semiring
{ one = [Map.empty]
, zer = [ ]
, mul = Asl s2 — catMaybes [ joinEnvs envl env2
| envl < s1, env2 < s2 ]
, add = Asl1 s2 — sl ++ s2
fromAssigns = Ax—x

}

The cartesian product operation above creates a list of many
join computations, which could be evaluated in parallel. In fact,
we attempted to parallelize in the standard Haskell way by adding
parList or parBuffer annotations to this list, either before or after
the catMaybes call. Unfortunately, this does not yield a parallel
speedup (either for satisfiability or full Typed Racket), because the
parallel work is too entangled with bookkeeping on lazy lists.

5.2 A Parallel Stream Algebra with Generators

List-based streams incur a lot of overhead. Intermediate lists are
assembled and deconstructed repeatedly. Further, the aggressive
fusion optimizations performed by GHC and its libraries cannot
eliminate operations like cartesian product.

Fortunately, there are more efficient ways to represent streams,
in particular as generators. Generators have a long history as a
control mechanism in programming language A generator takes
a partial answer and a continuation; it modifies, tests, or bifurcates

© Generators first appeared in the language Alphard in the mid 1970s [32]],
and later in CLU [25] and Icon [16]. A clear explanation of generators can
be found in [5].
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the partial answer; and then passes one or more answers on to the
continuation.
type Cont = PartialAns — [PartialAns]

type Generator = Cont — Cont
= Cont — PartialAns — [PartialAns]

Generators can be composed without creating intermediate
lists—only the final step allocates the list, [PartialAns]. Indeed,
generators, formulated in terms of continuations, have been used
for this deforestation benefit in many contexts. Yet there has been
little work on their use in parallel programmin For example, if
our answer type is a computation in the LVish Par monad, we get
the following solution type for satisfiability problems:

type Cont e s a = Env a — Par e s ()
type Sol2 e s a = Cont e s a — Cont e s a

contBased ::
contBased = Semiring { zer = (\_ _
-

A solution stream—the element type of our Semiring—becomes a
function of the form (A k w — action), where action constrains
the variable assignment, w, in one or more ways and passes each
variant on to the continuation k. Each computation, Par e s (),
does not return a value. Rather, we extract a result by attaching a
final continuation that inserts into an output Set or FiltSet LVar.

We see above that the zero for the algebra drops the partial as-
signment w on the floor, not calling the continuation. The one value
is (Ak w —k w), and fromAssigns adds its input constraints before
passing on w. The disjunction, or add operation is the obvious place
to add parallelism:

add st = Ak w —

do fork (s k w)
tkw

(...) =Semiring (Sol2 e s a)
— return ())

This parallel-OR duplicates the continuation, passing the incom-
plete answer to alternative code paths that extend it in different
ways. Note that because we thus far assumed immutable environ-
ments, w does not need to be copied before it is sent to different
destinations s and t.

AndPar: first technique The sequential version of binary con-
junction with immutable environments is:
mlst=Akw—>s Ax—>tkx)w

=Xk - s (t k)

=s0t
Indeed, there is no obvious opportunity to parallelize this as long
as environments are immutable. The continuation transformers are
composed, but w is threaded through linearly.

With the immutable definition of Env as Map Var a, we fold the
constraints into the environment before sending it along to the con-
tinuation. It is not possible to extract parallelism here at the level
of the Par monad. (It would be possible—but not profitable—to
spark the foldl computation, attempting very fine-grained paral-
lelism within the updates to a Map.)

If we use an LVar to represent a (monotonically mutable) envi-
ronment, we retain the generator design but and-parallelism be-
comes more feasible. We change the Env to an LVar, such as
SatMap a, and each generator modifies this environment as an
effect. Generators representing conjunctions only perform these
effects and always pass the same environment pointer on to their
continuation. For example, (k w) below:

fromAssigns init = A k w —
do mapM_ (constrain_ w) init
kw

7 One example in the literature is the related concept of push arrays [9]] used
in data-parallel programming.

Depending on the size of init it is possible to fork the entire
(mapM_ ...) expression or to turn it into a parallel loop.

AndPar: second technique There is another option for paralleliz-
ing and, but it may result in repeatedly traversing constraints that
are already “settled”. We introduce it visually first and then in code.
Let us visualize each continuation transformer as a
processing stage, pictured as a box. This is a push-
driven form of stream processing, where for every _| " AT
partial answer pushed to the input stream, the gen-
erator performs some processing and pushes zero or
more partial answers on its output stream. A regular conjunction of
disjunctions is accomplished by chaining these generators sequen-
tially. Indeed, this is our sequential version of mul:

e —
|-

T~—" I~

Passing rightward through a box corresponds to a partial answer
“passing the test” and moving on to the next round. Our second
technique for performing and-parallelism is to replace the above
picture with:

7
I T

[ cart [
Prod

Here we take each partial answer, duplicate it, and feed it
through both machines in parallel. The top and bottom boxes may
or may not contain disjunctions. All partial answers that make it
through the gauntlet on the top are joined with all answers on the
bottom, and, if the join succeeds, passed on. In code, we write:

mlst=Akw—
do sl < newEmptySet; s2 < newEmptySet

s3 < cartesianProd sl s2

forEach s3 (A (a,b) — case joinMaybe a b of
Nothing — return ()
Just w2 — k w2)

fork (s w (‘insert‘ si))

t w (‘insert‘ s2)

return ()

This uses LVars to accumulate the solutions from each branch,
and to take their cartesian product (a monotonic operation, and a
standard one for container LVars). There is a delicate trade-off,
however, in applying this technique. First, because the input answer
w, is passed to both branches, all the joins we perform redundantly
combine the (obviously compatible) information in w with itself.
Second, we have now removed some of the deforestation benefit of
generators by accumulating the partial answers in set LVars. Nev-
ertheless, we in the next section we will see that this parallel-and
technique is quite effective in typing some Typed Racket programs.

6. Typed Racket Type Checking

Typed Racket [37] is a typed version of Racket [13] that uses
gradual typing [33} 136] to integrate with untyped Racket. In this
paper, we consider only the type checking of typed programs.
Typed Racket’s type system includes a number of features
which combine to make type inference difficult. First, Typed
Racket supports subtyping, which is used widely in a variety of
ways in Racket programs. Second, types include non-disjoint union
types, so that 7' <: (U S T'). Third, overloading on function
types is supported with ordered intersection on function types [34].
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Fourth, Typed Racket supports arbitrary equi-recursive types, used
for modeling even simple data structures such as lists.

As a result, Typed Racket, following many other recent lan-
guages, does not attempt complete whole-program type inference
in the fashion of Standard ML. Instead, it employs local type in-
ference and bidirectional type checking [29]], similar to, e.g, Scala,
TypeScript, and Rust.

In this setting, the central inference problem is choosing an
instantiation of type variables when a polymorphic function is
applied to concrete arguments. For example, when a Typed Racket
programmer writes:

(map addl (list 1 2 3 4))

we need to infer that map should be instantiated with the types
Integer and Integer for its inputs and outputs, respectively.

As a result, the type inference problem is somewhat simpler
than in a global type inference setting. In the above case, if map
has the type VaB.(a — ) x listof(a) — listof(8), the infer-
ence algorithm must find a substitution for o and 8 that makes
Integer — Integer a subtype of & — (3 and listof (Integer) a sub-
type of listof ().

However, the inference problem in Typed Racket is made more
complex than this simple example by several factors. First, type
constraints in inference can involve subtyping, not just equal-
ity. Second, Typed Racket produces very large types in several
circumstances—when providing extremely precise specification of
function behavior [34] and when inferring types for large blocks of
constant data. As a result of these and other issues, Typed Racket
is known to have slow typechecking. We conducted an opportunity
analysis of several large Typed Racket libraries, analyzing how
long every type inference call took. We discovered one file in the
Typed Racket math library spends multiple seconds typechecking
a single pair of function calls, both involving numeric vector oper-
ations, and some pathological cases can have typechecking times
measured in minutes—one such case was removed from the Typed
Racket test suite since it took too long to run. As described in the
introduction, this is a practical problem for Typed Racket users.

6.1 The core algorithm

The core of the inference algorithm is an extended form of the
Pierce and Turner [29] algorithm, which handles union types, re-
cursive types, and function overloading. The fundamental idea is
that we grow a set of constraints on the type variables to be in-
ferred based on the actual types of the arguments provided—in
the map above the actual arguments are Integer — Integer and
listof (Integer).

Each constraint is a pair of types: an upper and a lower bound.
Two constraints can be combined by joining the lower bounds
(represented by the U operation) and taking the meet of the up-
per bounds (meets cannot always be represented exactly in Typed
Racket, requiring some approximation). Inference fails if the con-
straints cross. To solve S <: (uX.T'), the algorithm must unroll
recursive types; to ensure termination, the recursive solver must
also keep a seen set, so that if, while unrolling, the same S <: T is
encountered again, the algorithm terminates successfully.

The additional complexity, and source of or-parallelism, comes
from handling union types and overloaded function types. To make
a type A a subtype of (UBC), it must merely be a subtype
of one of B or C. Therefore, the standard sequential algorithm
as currently implemented in Typed Racket simply tries to solve
A <: B, and if that fails, tries A <: C'. Or-parallelism then enters
by trying both of these possibilities simultaneously, succeeding
if one succeeds. Similarly, overloaded functions in Typed Racket
combine multiple signatures; and when performing a subtyping
test between them they introduce both and-parallelism and or-

parallelism: every possibility in the super type must be the above
some function signature in the subtype.

Inference in Typed Racket also has the possibility for and-
parallelism. If we wish to constrain (A, B) to be a subtype of
(C, D), this implies a pair of constraints, both of which must
succeed for a full solution.

6.2 Implementing Typed Racket Inference

The heart of Typed Racket’s type checker is infer, which takes the
names of type-variables to constrain, as well as the relevant types
for type-checking a polymorphic function invocation:

infer tvars actualTys formalTys resultTy expectedTy

In order to perform parallelization experiments using LVish,
we port the code and the grammar of types to Haskell with one
omission of functionality—we omit variable arity functions, which
do not occur in our benchmarks. Also, while we keep the structure
of the code the same in this conversion, we substitute some data
structures with idiomatic Haskell counterparts (replacing lists with
sets or maps in places). We refer to this as the “Pure/Seq” version
of the program—purely functional, non-monadic, and sequential.

Refactoring for parallelism Next we rewrite the algorithm in
monadic style and abstract the core constraint-gen (cg) recursion
so that it returns a solution stream as in 5] and factors out the
corresponding methods for conjunction and disjunction. Thus it is
possible to use the same core algorithm with different evaluation
strategies, including sequential or parallel versions. Each imple-
mentation of the type checking solution algebra provides the fol-
lowing functions, which we have given names more appropriate to
the task at hand, instead of the generic semiring interface:

® goodsofar (one) — result indicating no conflicts observed at this
point in the search

blowup (zero) — result indicating a conflict found

® constrain (fromAssigns) — add an upper and lower bound
constraint on a type variable, apply this to all partial solutions
processed

orSplit (add) — test N alternative (S <: T;) subtyping con-
straints, where i € [0, N)

andPar (mul) — join constraints with (optional) parallelism

Then, using the above, the following is a subset of the cases in
the heart of the subtype checking algorithm, showing each possible
behavior:

-- Make s a subtype of t:
case (s,t) of
(s, t) | (s, t) € seen — goodsofar

(s, t) | s == — goodsofar
(s, t) | subtype s t — goodsofar
(_, Top) — goodsofar

(Var x, t) | x € xs — constrain bot x (demote vs t)
(s, Rec _ _) — cg s (unfold t)

-- N-way or-parallelism:

(s, Union ts) — orSplit cg s (elems ts)

-- and-parallelism:

(Pair a b, Pair a’ b’) — andPar (cg a a’) (cg b b’)

_ — blowup -- s cannot be a subtype of t

Solution strategies We implement this parallel algebra of solu-
tion streams while leaving knobs to toggle and-parallelism and or-
parallelism independently at compile time. Or-parallelism becomes
a standard parallel forEach from the LVish library:
orSplit :: (a — a — Solution) — a — [a] — Solution
orSplit doConstraints s ts = A\ k varmap —
parForEach ts (At — doConstraints s t k varmap)
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Note that the parForEach is an asynchronous operation—it forks
work and returns immediately, without any join.

6.3 Typed Racket Evaluation

For our implementation of the core of the Typed Racket inference
algorithm, our evaluation focuses on two different demanding in-
ference problems. First, we consider the case mentioned in the
introduction—a small function with slow inference. Second, we
consider checking large constant data against a small type. These
are both representative problems that have been identified as the
most serious performance problems for Typed Racket.

“Bigcall”: Higher order functions over extremely polymorphic
inputs Typed Racket supports both polymorphism and over-
loading, and when combined, these can produce computationally-
intensive inference problems. The most significant of these is the
followinﬂ originally designed as an example of Typed Racket’s
variable-arity polymorphism [35].
(: map-with-funcs
(A1l (b a ...)

((a ... >Db) * => (a ... => (Listof b)))))
(define (map-with-funcs . fs)
(lambda as
(map (lambda ([f : (a ... -> b)]) (apply f as))
£s)))

((map-with-funcs + - x /) 1 2 3 4 5)

This function consumes a variable number of functions, bound to
the list £s and then a variable number of arguments, bound to the
list as. It then applies each function £ from the list to all of the
as. We then apply map-with-funcs to a few arithmetic functions,
and apply the result to numbers. The result is a list containing the
sum, difference, product, and division of all five numbers (Racket’s
numeric operations all support arbitrarily many arguments).

The sequence of arguments fs is described in Typed Racket
using variable-arity polymorphism. Since we omit this portion of
the algorithm, we instead consider versions of map-with-funcs
that consume 1, 2, 3, or 4 arguments: i.e., (map-with-funcs + -
*) is the three argument case. We name these bigcall(1) through
bigcall(4) for brevity.

Solving this inference problem requires handling several type
variables, each of which is jointly constrained by all the arguments,
but more importantly, Typed Racket provides very large overloaded
types to give precise specifications to numeric operations such as
(+), which has hundreds of possible types [34]. Since the type
of each arithmetic operator is an intersection, any choice of a
single overload for one can be combined with any choice of an
overload for another input, resulting in a combinatorial explosion
of possibilities. Thus type checking all of bigcall(4) takes more
than 30 minutes to complete in Typed Racket. (But in this section
we focus on inference for an individual call to map-with-funcs.)

“Treecall”: Dealing with large constant data The second chal-
lenge we consider is that of large constant data. Typed Racket sup-
ports flexible and precise types for structured data in S-expression
format. If a large constant is present in a program and no extra an-
notation is provided, it will therefore infer the most precise type,
which can be the same size as the data itself. When a polymorphic
function such as map is applied to this data structure, inference must
process this large type.

To simulate this in a controlled fashion, we designed a bench-
mark which is the equivalent of applying the following function to
progressively larger inputs of trees of symbols and strings.
(define-type (Tree A) (Rec X (U (Leaf A) (Pair X X))))

(: left : (A11] (A) (Tree A) -> A))

8 Taken from Typed Racket’s online tests at http://git.io/vTwBd
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Figure 4. Treecall(16), ParAnd case: here scaling stops at eight
cores. We plot time rather than parallel speedup and include mini-
mum and maximum times across all trials in the error bars. In this
way, we can see how runtimes become chaotic after scaling stops.
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Figure 5. Treecall(16): Large-constant benchmark of size 216
desktop platform. Here or-parallelism is not useful, because in each
binary-Or, one branch is always an immediate dead-end.

(define (left t) (if (pair? t) (left (car t)) (leaf-val t)))

Hence we call this “treecall”, because it calls 1eft on a constant
tree datum. Treecall(IV) corresponds to applying left to a tree
of depth N, i.e. with 2V leaves. In a language with a rich macro
system like Racket’s, large compile-time data is a reality, and is
currently a Typed Racket performance problem.

6.3.1 Benchmark Results

We evaluate treecall and bigcall on one desktop-class and one
server-class system, with one Intel Xeon 15-3470, and two Xeon
E5-2670 CPUs, respectively (4 and 16 cores). All experiments were
run using GHC 7.8.3 and all data points are the median of 5 trials.
We distinguish two different kinds of run, where we generate either
all substitutions, or just the first, which we explain further below.

Treecall results

Figures [ and 5] show treecall(16)—the result of applying left to a
constant of size 2! on the desktop and server platforms, respec-
tively. In this benchmark there is only one solution, so “all vs.
first” solution is immaterial. Because of the union in the list type,
(Rec X (U (Leaf A) (Pair X X))), there are many apparent op-
portunities for or-parallelism in this benchmark. However, they are
unprofitable opportunities, because only one of the two branches
will succeed, and the other will fail quickly. The trick here is to not
get derailed by or-parallelism, so that the actual and-parallelism
present (across the large tree) can be exploited.
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To start with, the original Typed Racket inference algorithm
takes approximately 10x as long as the sequential Haskell imple-
mentation on treecall, due to differences in optimization and data
structure choices. We evaluate several Haskell implementation vari-
ants. As described in §6] our idiomatic Haskell port is sequential,
and structurally close to the original, whereas our parallel version
is parameterized so as to take either a parallel or sequential imple-
mentation of conjunction and disjunction.

e Pure/Seq — original Racket-to-Haskell port.

o [ .Vish/NoPar — refactored to use the LVish Par monad, and to
use generators to represent solution streams. Still sequential.

e ParAnd — turn on parallel And.
e ParOr — turn on parallel Or.

e ParBoth — turn on parallel And and parallel Or.

Treecall provides unprofitable or-parallelism with very poor
granularity. For this reason the ParOr variant of the benchmark
not only fails to speed up, but gets a parallel slowdown due to
useless tasks and threads bouncing between cores. Not only does
the ParAnd variant work well, but ParBoth is fine as well. ParAnd
can cure the problem with or-parallelism in this case, because
the andPar function is essentially the “outer loop”, and it is this
level of tasks that are stolen most in the underlying work-stealing
implementation of the Par monad.

In summary, Treecall(16) takes 1.29s in the pure (non-LVish)
Haskell version on the server platform. Then, when switching to
LVish, it gets up to a 7.68x parallel speedup on 8 threads on the
server, and 3.17 x speedup on 4 threads on the desktop platform.

Bigcall results

Next, we evaluate bigcall(3) and bigcall(4): three-argument and
four-argument variants of map-with-funcs. The numbers we re-
port here for LVish compute all solutions. For bigcall there are a
modest number of solutions (dozens) for very large search spaces
(millions). We also timed an LVish version that cancels threads af-
ter reporting the first solution, which is faster, but is not strictly
deterministic. Thus we focus on the predictable all-solutions ver-
sion here, which also corresponds to the case where the infer fails
and the whole search space must be traversed.
There are two distinct opportunities in this benchmark:

e Deforestation: the Pure/Seq version uses lists to represent
streams, and exploring the search space requires a lot of list
bookkeeping.

e Or-parallelism: because of the combinatorial explosion of dif-
ferent possible types for (+), () etc., there should be plenty of
parallel work in exploring this search space in parallel.

Indeed, the LVish version of the program achieves a big speedup
in both these categories. For example, the Pure/Seq Haskell imple-
mentation takes 2.36 seconds to compute all solutions for bigcall(3)
(server platform). Just by deforesting intermediate lists using gen-
erators, LVish achieves a 9.37x speedup over this baseline. And,
even though the remaining time is only a short 0.25s, LVish ParOr
and ParBoth variants still achieve greater than 7 parallel speedup,
resulting in a total speedups of 70x or higher over the original,
idiomatic Haskell version ported from Racket. The speedup com-
pared to original Racket version would be even greater, because
the Racket version takes slightly longer, 3.0s, to compute the first
solution to bigcall(3).

Note that in bigcall, computing all solutions is wasteful, with
the purely functional Haskell version (Pure/Seq) taking only 0.18s
as opposed to 2.36s on bigcall(3) to compute the first rather than all

Parallel Speedup
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1 thread
= 2 threads
B 3threads
B 4 threads

Time in Seconds

LVish/NoPar ParAnd ParOr ParBoth

Figure 6. Bigcall(4): Highly polymorphic inputs benchmark on
the desktop platform; shows time, in seconds, to type check
(map-with-funcs + - * /), computing all solutions. Note that the
time for Pure/Seq is too much larger than the LVish version to show
here (7.93s for even the first solution).
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Figure 7. Bigcall(3) and bigcall(4): Parallel speedup on server
platform, three- and four-argument version. Even bigcall(3) is time-
consuming enough to get a good parallel speedup. This graph also
demonstrates the “last core slowdown” which is still a problem with
some parallel programs on GHC 7.8.3.

answers on the server platform. However, the deforestation benefit
from switching to LVish makes up for the difference.

When scaling to the four-argument version, bigcall(4), LVish
is much faster than the purely functional versions. Union types in
Typed Racket programs contain or-parallelism opportunities with a
very low survival rate—often only one of the variants in a union
matches. For this larger case, the parallel speedups go to 8.46x
(16-core server, using 14 cores) and 3.43x (4-core desktop), and
total speedup of LVish over Pure/Seq approaches 80x.

Note that the “first found” version we mentioned earlier is faster
still, but it requires that we admit “don’t care” nondeterminism,
whereas our goal here was strict, statically-enforced deterministic
parallelism with LVish. In future work, we plan to study the issue
of extracting a deterministic result, in parallel.

7. Related Work

The monad-par system predated LVish and provided IVars as the
sole synchronization construct. Marlow et al. [27] presents paral-
lel analysis of interdependent definitions as a motivating example,
but no implementation was evaluated. Later, Marlow developed
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this into an example in his parallel programming tutorial (e.g. at
CEFP’12 [26]). This example shows the principle of performing
analysis of interdependent (but non-recursive, acyclic) definitions
by representing the inter-definition dependence graph with IVars.
Definitions only communicate their types after generalization in
this example—there is no attempt to parallelize during the uni-
fication process. (Besides, top-level definitions in languages like
Haskell and Typed Racket allow mutual recursion and so do not
provide an acyclic dependence graph.)

Work on parallel Prolog [[10}/17] addresses issues of and- and or-
parallelism. Prolog’s control model is significantly different from
LVish, however, due to the presence of nondeterminism and the
cut predicate. As a result, the data structures used are specific to
logic programming, where ours are more general.

Saraswat and Rinard [31]] discuss cc (] ,—), a language for con-
current constraint logic programming. Their system also includes a
notion of blocking reads analogous to the threshold reads of LVars,
and additionally requires that concurrently written constraints be
consistent with one another. It has nondeterministic operations, but
also does identify a subset of operations that retain determinism.
Modern concurrent constraint programming systems are available
in software packages like Gecode [14]—a C++ library. The builtin
constraint types and search strategies would not apply to, e.g.,
Typed Racket typechecking, lacking Herbrand constraints. But one
could use such a system as an alternate starting point for this re-
search: writing new C++ code to extend the system with new mod-
els, propagators, and branchers. However, the verification or test-
ing burden to ensure this C++ code retains determinism is a much
more difficult obligation than with LVish. In LVish, we must ensure
only that a TyVar LVar’s join function has the appropriate properties
(commutative, associative, idempotence, and absorption). But join
is just a pure function that can be tested for these properties with
QuickCheck or other methods.

Deterministic Search Algorithms 1In [20], the authors give a de-
terministic parallel algorithm for backtracking search problems.
COMMON-CRCW, their computational model, allows for arbi-
trary concurrent reads, and restricts concurrent writes by requiring
that all threads write the same value. IBM’s CPLEX system [11]]
offers a parallel solver for integer linear programs, with some ex-
tensions. Their solver is deterministic, except in the case where the
user provides control callbacks, which allow observation and mod-
ification of the state of the parallel search.

8. Conclusion

Type checking in modern type systems is an expensive process,
but not one that has previously been parallelized. We saw how the
LVar framework is one possible way to address this challenge while
also ensuring determinism in addition to gaining parallelism. We
showed substantial parallel scaling and improvement in wall-clock
time on two very different type systems: one very widely used, with
3.57x parallel speedup, and the other slow and sharply in need of
parallelization, with up to 4.71x and 8.46x parallel-speedup on
our two benchmarks, respectively.
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